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MANAGEMENTUITTREKSEL

Titel Een theoretische studie naar de prestaties van de FDTD code op een massief
parallelle computer

Auteur(s) dr. M.G.E. Brand, ir. L.J. van Ewijk

Datum april 1994

IWP-nr. 760.3

Rapportnr. FEL-93-B3366

Voor veel toepassingen in de elektrotecbniek is het van groot belang omn zeer nauwkeurig de

interaktie van elektromagnetische golven met gecompliceerde strukturen te kunnen modelleren.

Dit heeft geleid tot de ontwikkeling van een groot aantal modelleringsmethoden en

computerprogramma's. De meeste van deze methoden hebben een beperkt toepassingsgebied

(door de gekozen fysische benadering) en zijn zeer rekenintensief. De methode die in de literatuur

bekend staat als de "Finite Difference Time Domain" (FDTD) methode lijkt beide bezwaren te

ondervangen. Bij het 1-ysisch en Elektronisch Laboratorium TNO is een 3-dimensionaal (3D))

FDTD programma ontwikkeld voor de berekening van de radardoorsnede (RCS) van objekten.

Behalve voor RCS berekeningen is de methode ook ingezet voor andere elektromagnetische

problemen. Hoewel de FDTD methode een lagere complexiteit heeft dan alle andere exacte

model eri ngstechn ieken beperken de vereiste rekentijd en gebeugencapaciteit toch drastisch het

toepassingsgebied. De metbode is echter bij uitstek gescbikt om te implementeren op

supercomputers met zeer veel parallelle processoren.

In dit rapport presenteren wij een theoretische studie naar de prestaties van een implementatie van

de FDTD code op een massief parallelle computer. De bier gepresenteerde complexiteitsanalyse

is uitgevoerd voor RCS predictie, maar kan met enige kleine wijzigingen gebruikt worden voor

andere elektromagnetische problemen. Bij de analyse is uitgegaan van een data decompositie

algoritme.

De analyse is toegepast op een mogelijike implemnentatie op de Parsytec GCeI-315 12 van bet

"Interdisciplinary Center for Computer based Complex systems research Amsterdam (IC3A)". De

Parsytec is geconfigureerd als een twee-dimensionaal rooster van 512 T805 transputers. Als

vergelijkingsmateriaal worden de prestaties van een implemnentatie van de code op een

conventionele supercomputer, de Convex C230 van het Fysisch en Elektronisch Laboratoriumn

TNO. gepresenteerd.
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Uit deze theoretische studie is gebleken dat de methode zich uitstekend laat parallelliseren met

parallelle efficienties van 95%-99%. Dit betekent dat de methode zeer goed schaalbaar is: hoe

meer processoren hoe sneller de code. Op de Parsytec zal de code 6 tot 10 keer sneller lopen dan

op de Convex, hetgeen de oplossing van veel grotere problemen toelaat in dezelfde rekentijd.

Er wordt aanbevolen omn een parallelle versie van het FDTD programma te ontwikkelen en te

implementeren op de Parsytec GCeI-315 12 van het IC3A, met de bedoeling de hier gepresenteerde

analyse te valideren en omn te beschikken over een krachtige code voor de oplossing van

elektromagnetische problemen. Een dergelijke implementatie kan op eenvoudige wijze overgezet

worden op de volgende generatie parallelle computers die rekensnelheden van 100 Gflops tot I

Tflop binnen bereik zullen brengen voor het jaar 2000.
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SCOPE AND OUTLINE

Accurate numerical modelling of full-vector electromagnetic wave interactions with arbitrary

structures is difficult. Typical structures of engineering interest have complicated shapes,

apertures, cavities and material compositions or surface loadings. Often these features prohibit the

use of approximate solution techniques and make it necessary to solve the governing

electromagnetic wave equations, the Maxwell equations, exactly. This poses a major

computational challenge, because in solving the Maxwell equations one typically needs to sample

the electromagnetic waves with ten points per wavelength or more. For real life applications this

leads to problems with a tremendous number of unknowns.

Traditionally, these computations were done in the frequency domain. Until recently the primary

computational approach for detailed modelling of electromagnetic wave scattering involved

frequency-domain integral equations. From a supercomputing perspective this involved the need

to achieve efficient solutions of dense complex valued systems of tens of thousands of linear

equations. The solution effort and memory requirements involved with these methods has put a

severe limitation on their applicability.

Directly solving the Maxwell equations in the time-domain is relatively new in the

electromagnetic community but is becoming increasingly popular. It allows supercomputing

solutions of tens of millions of electromagnetic field unknowns without any matrix manipulations.

One of the most popular approaches to time domain modelling is the Finite Difference Time

Domain (FDTD) method. The FDTD method is very simple in concept and execution. However,

it is remarkably robust, providing highly accurate modelling predictions for a wide variety of

electromagnetic wave interaction problems.

At the Physics and Electronics Laboratory a FDTD code has been developed to predict the Radar

Cross Section (RCS) of arbitrary complex objects. This code was implemented on a

Convex C230, which is a conventional supercomputer with three vector processors. With this

computer scattering from objects with maximum dimensions of only 5 wavelengths can be

analyzed.

However, the FDTD method seems naturally suited for large scale processing on massively

parallel processors (MPP's).

The advent of these MPP's promises computational speeds up to I Tflop before the end of the

century. This should permit FDTD and similar approaches to model the dynamics of hundreds of

millions to billions of field unknowns, allowing for instance the calculation of the RCS of entire

F-16 size jet fighters up to 10 GHz, the calculation of the radiation pattern of a realistic phased

array antenna or the fields induced in a patient during a hyperthermia treatment.
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In this report we present a theoretical study of the performance of an implementation of the

FDTD code on a MPP. The MPP we have in mind is .he Parsvtec GCel-3/512 of the

"Interdisciplinary Center for Computer based Complex systems research Amsterdam (IC3A)",

which is configured as a two-dimensional grid of 512 T805 transputers. The theoretical analysis

presented in this report is, however, completely general and can be used for every MPP. The

analysis is carried out for RCS prediction, but can, with minor adaptions, be used for other

electromagnetic problems.

In chapter 2 we discuss the FDTD method, presenting all the issues which have to be adressed in

a parallel implementation. In chapter 3 a time-complexity analysis of the FDTD method on a

MPP is discussed and applied to an implementation on the Parsytec GCel-3/512. In chapter 4 a

comparison is presented between run-times on the Parsytec and the Convex. Chapter 5 consists of

conclusions and recommendations.

We would like to acknowledge A.Hoekstra of the IC3A for introducing us to the concepts of time-

complexity analysis and the IC3A for providing us with an account on the Parsytec.
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2' DESCRIPTION OF THE FDTD METHOD FOR RCS PREDICTION

2.1 Introduction

The Radar Cross Section of an object is defined as:

IEs 12 IHlsI2
RCS = lim 4iTr 2  = lir 4Ttr- (2.1)

r -+- IEi 2 r,- THiI2

where r is the distance from object to observer, Ei and Hi are the electric and magnetic fields

incident at the object, and E- and H. are the observed scattered electric and magnetic fields.

Throughout this report we will use the convention that underlined quantities are vector quantities.

To calculate the RCS of an object one has to calculate the fields scattered by that object when

illuminated by an incident plane wave. The equations which govern these fields are the Maxwell

curl equations:

l.i(x)t lH(x,t) = -VxE(x,t), (212)

E(x)D) E(_,t) - VxH(x,t)-a(x)E(x,t),

which have to be solved subject to the usual boundary conditions at medium interfaces. In

eqs.(2.2a) and (2.2b) F- is the electrical permittivity, a the electrical conductivity, g. the magnetic

permeability and D, denotes partial differentiation with respect to t.

Eqs.(2.2) constitute a system of six coupled scalar equations with six unknowns : Ex, Ey, E, H,

Hy, Hz. In this report we will discuss the Finite Difference Time Domain (FDTD) method for the

direct numerical solution of these equations.

2.2 The FDTD algorithm

The FDTD method was first presented by Yee[ 1I and developed further by Taflove[21. In order to

solve the system of equations (2.2) Yee introduced a set of finite difference equations. Following

Yee's notation, we denote a space point in a rectangular lattice as

(i,j,k) = (i8,jS,kB) (2.3)

and any function of space and time as

Fn(ij,k) = F(ib,j8,k8,nAt) (2.4)
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where Fn i~j,k) is a field sample at position (i5,j8,k6,nAT), 3 is the lattice space inrement and At

is the time increment. Yee used centered difference approximations for the time and space

derivatives that are both simply programmed and second order accurate (the local truncation error

is of order 2) in the space anid time increments respectively:

Fn(i+i2,j,k)-Fn(i-)2,j,k)a3xFn(i,.i'k)= 6-+0(8'-) (2.5 a)

Fn +1/(2 (ij K)-Fn-1 2(ij, k) +O(At2) (2.5b)3tFn(i,i,k)= AtA2 (.b
At

To achieve the accuracy of (2.5a) and to realize all of the required space derivatives of (2.2), the

components of E and H are positioned about a unit cell of the lattice as shown in Fig. 2. 1.

Z

z E

E (i- Ij+ 1,k+ 1)xY
S. ~.. ........i ....- .. ...... .

E x EZ

H .... (i- 1,j + 1,k)

E E

(i,j,k) E (i,j + 1,k)

iT

x

Fig. 2.1 A Finite Difference Time Domain unit lattice cell
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This leads to a so-called "staggered grid" in which the E and H grids are interleaved in space. To

achieve the accuracy of (2.5b) the E and H fields are evaluated at alternative half time-steps. This

is the so called leap-frog" scheme.

Substituting the expressions (2.5a and b) into (2.2) one obtains a finite-difference analog of the

Maxwell equations. The following are sample finite difference time-stepping relations for a

magnetic and an electric field component:

E,,+ t (i+l/2,j.k) = C,(m) E,,n(i+V/,j,k)

+ C,(m){ H1n+1/ 2(i+VIj+V,k) - H /'t/ 2(i+½,j-Vk)

-H ."+1/ 2(i+'/2,j,k+½2) + Hyn"i'2(i+½/J ,k-z/2) (2.6a)

Hn+/2(i,j+V/,k+1/2) = Hn-i/'(ij+1/2,k+lA)

+ C3(m)( Ey"(ij+½/,k+l) - Ey"(i,j+/2,k)

-E/n(ij+l,k+1/2) + Ep'(i~j,k+1/2) (2.6b)

with

CI(m) =(2E(m)-Atca(m) ) / ( i2-(n)+Ato(m))

C,(m) = 2At / ( 25(m)+iAta(m))
C3(m) Atz / (84(m) )

in which m = media(ij,k) is the type of medium at a field ccaiponent location. To ensure stability

of the time stepping algorithm, At is chosen to satisfy the inequality [2]

At < &(cma,43)

where Cmax is the maximum wave phase velocity within this model. To obtain accurate results 8

needs to be chosen small compared to the wavelength, usually &<MO. Also 8 has to be small

compared to the dimensions of the object, because curved boundaries are transformed into a

staircase approximation.

At each time step the system of equations to update the field components is fully explicit and very

simple. The new value of a E-field vector component at any lattice point depends only on its

previous value and on the previous values of the surrounding H-field components and vice versa.



TNO report

FFL-93-B366 Pae

1o

2.3 The computational domain

The FDTD model is by necessity formulated as a boundary and initial value problem on a finite

portion of space: the computational domain, usually a rectangular paralielepiped (brick) with

dimensions 0<x5a6, 0<_y~bb and 0<z<_c8 (a,b and c integers). Therefore the solution of scattering

and radiation problems in unbounded (open) spatial regions requires a mechanism for coupling

the closed region numerical solution to exterior space. This mechanism serves to enforce the

radiation condition which prescribes the behaviour of electromagnetic fields at infinity. In general

the computational domain consists of an arbitrary scattering target surrounded by a finite portion

of free space enclosed by the surface on which the radiation boundary condition is enforced.

2.3.1 The Absorbi'ig Boundary Condition

The absorbing boundary condition or radiation boundary condition which is implemented is based

upon the so called "one-way wave equation". This type of boundary conditions was introduced by

Enquist and Majda[3]. The one way wave equation is a partial differential equation which permits

wave propagation only in certain directions. Enforcing a numerical approximation of this "one-

way wave equation" at the boundary of the computational domain produces a highly accurate

absorbing boundary. In the current FDTD code a second-order finite difference approximation of

the one way wave equation which was proposed by Mur[4] is implemented.

A sample expression for a field component at the boundary x=O is given in (2.7).

Un+t(O,j,k) = -Un-(Ij,k) + Al ( Un+l(ij,k)+ Un-(Oj,k) )

"+ A2 ( Un(Oj,k)+ Un(l,j,k) )

"+ A3 ( Un(oj+l,k)+ Un(Oj-l,k) + Un(l,j+l,k)+ Un(lj-l,k)

+ Un(Oj,k+i )+ Un(Oj,k-1)+ Un( ,j,k-Ll)+ Un(1,j,k-l)

- 4 Un(Oj,k) - 4 Un(1.j,k) ) (2.7)

in which A IA2 and A3 are simple constants determined by 8 and At.

2.3.2 Lattice regions and the plane wave source condition

As shown in fig.2.2 the computational domain is divided into two distinct regions, separated by a

rectangular surface which serves to connect the fields in each region.
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2. Scattered Fields

1.Total Fields

Plane Wave Boundary

Absorbing Boundary Condition

Fig. 2.2 The Plobal geometry of the FDTD lattice

Region I of the lattie is denoted the total-field region, region 2 the scattered-field recion. The

object is positioned in region I where all field quantities are comprised of the sum of the incident

wave and the scattered field. In region 2 all field quantities are comprised only of the scattered

field.

The rectangular planes that form the boundary between regions I and 2 contain E and H field

components. These field components are updated according to equations (2.6) and subsequently

corrected to maintain the two distinct regions. A Typical FDTD computation at these boundary

points is:

E,--'(i+½z,jo,k) = Exn+l(i+Y 2,j, Ok)I eqn(2.6a) +

C2(m) Hz i.a+"(i+l/2,j o-'/2,k) (2.8)

Here Exn+i(i+½2,jo,k) is the usual FD-TD value of the total Ex component evaluated at point

(i+2,jo,k) and time step n+l. The superscript "iT denotes the known incident field component

value. These computations assure consistency of the subtraction operations of field components

across the Region I / Region 2 boundary. In effect, total-field quantities are always subtracted

from similar total-field quantities; the same goes for scattered-field quantities. This enforcement

of consistency serves to precisely connect the two regions. Further, the inclusion of arbitrary
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values of Ei and Hi in the consistency relations permits the specification of any desired plane

wave of arbitrary angle of incidence and arbitrary polarisation.

2.3,3 The RCS calculation

Time stepping is continued until the desired sinusoidal steady state behaviour is achieved. The

time needed to reach this state is mainly depending on the object's electrical size. The total

number of time steps needed for a wave travelling at the speed of light to make two complete

front-to-back-to-front traverses is normally sufficient to reach the steady state. Typical times can

be found in [5]. After reaching the sinusoidal steady state the magnitude and phase of the

components of the near-fields have to be determined. Due to the fact that the FD-TD method

causes some fields to have a nonphysical dc offset, an algorithm is used that determines the

maximum and minimum of a field component. The magnitude is calculated as (max-min)/2 and

the phase is the phase of the maximum minus art arbitrary fixed phase. To achieve a greater

accuracy multiple cycles can be treated this way and an average result can be calculated.

The far field and RCS data can be obtained, in principle, by solving an integral equation for the

induced currents on the surface of the object. For complex objects this can be very difficult. A

good alternative is to set up an equivalent problem. The object is surrounded with an arbitrary,

closed, virtual boundary, the surface Sa, on which the near-field data is obtained via the FD-TD

method. To obtain the RCS these near fields are transformed into far f.elds using the Chu-Stratton

equations:

E(x)= l/47tf ds {i(noixH)go+n'xExV'gn+(n'.E)V'go) (2.9a)

Is(x) = -1/47cf ds iwF(n'xE)g0 -n'xHxV'g0 -(n'.H)V'g 0o} (2.9b)

in which n' is an outward pointing normal and go the greens function of free space. The far fields

are obtained by taking the observation point x to infinity. The RCS is calculated from these

farfields by applying (2. 1)
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3 TIME COMPLEXITY ANALYSIS OF THE FDTD CODE

In chapter 2 the description of the FDTD code is given.

In this chapter we will perform a time complexity analysis of this code when implemented on a

parallel machine. The purpose of such an analysis is to assess the effectiveness of using a parallel

machine, expressed as a numerical efficiency defined as:

T eq (3.1)

p T""

In this equation Tseq represents the time needed by the program when run on one processor, Tpar

the time when run on a parallel machine and p the number of processors used. The numerical

efficiency reflects the speed-up that can be achieved by increasing the number of processors.

The analysis given here will be generally applicable to any parallel machine, but we restrict

ourselves to an implementation on the Parsytec GCel-3/512 when specific numbers are necessary.

Furthermore data decomposition is used, see Fox [7] and the 3-D computational domain will be

mapped onto the 2-D processor network by assigning all grWdcells in one of the cartesian

dimensions to the same processor.

3.1 The FDTD code on a parallel machine

From a sample equation of the computations that are performed with the FDTD technique we can

find that 6 floating operations are needed to update one field component.

In every time step we need to compute several new field components in every gridcell. Figure 3.1

shows the way the field components are distributed over each gridcell. It is clear that it is not

necessary to compute all values needed for a complete update of a gridcell in that specific cell

itself. Many values are shared between more than one cell.
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i- j. ,k ÷I ) I• (i-I.I.k +I1) E, (i.1.1+ 'k÷ +I)

!t ,tE, €., 
E.

E,

(t~~~ ~ 1- k). ,)--

z

(iE'. 1 11>

E £ E

Fig. 3.1I Distribution of field components over FDTD gridcells

In figure 3.2 we can see that the minimum number of field component, that must be computed in
a gridcell equals 6. This implies that the update of a gridcell costs 36 floating operations.

Z

Ez .

x

Fig. 3.2 The field components that must be updated in a gridcell

i i iY
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In the following we use the same notation as is used in Hoekstra [6].

The computational work to be done consists of a number of cycles, or time steps as they are

called. Each cycle can be divided into two parts:

- computation of the field values in all gridcells,

- exchange of data between processors.

After each cycle the processors are synchronized and the next cycle is started.

The time needed by the parallel program depends on the number of processors, the number of

floating operations to be performed and on a number of system parameters. These system

parameters are:

"- tcalc time needed for one floating operation,

"- Tcomrn time needed to transfer one real number to a neighbouring processor,

- tstartup time needed to establish a communication link,

- topology the order of the processors in the network.

In order to find an expression for the total time needed for the computation we start with the time

needed for the update of the field components. We use a grid of a x b x c gridcells divided over Pi

x P2 processors, as shown in figure 3.3.

a gridcells

I 4

T0 •_U)
I IS I I :

I I I 4 -

I 0

I I I ( II

° ' !'i __ _ _ _ _ __ _ _ _ _ _

Pl processors

Fig. 3.3 The FDTD grid with a x b x c gridcells divided over P, x P2 processors.
The c direction is the direction out of the paper
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This means that every processor ideally computes the values for a/pj x h/P2 X C gridcells. It is,

however, implementation dependent whether a/p, and b/P 2 are integer numbers. If this is not the

case we must consider the worst case situation where some processors compute the values for

more gridcells than other processors. This can be written as in the following equation:

Tpar= 36F1 F lc (3.2)
131 P2

in which Tpar is the time needed by the parallel program and [x] denotes the ceiling function of x.

By using T,,q, as defined earlier, equation (3.2) can be written as:

Tseq a b ab
TPU= + 36 (f--- I - -) C tcalc (3.3)

p P1 P2 PIP2

in which pIxp2 equals the total number of processors p and Teq can be expressed as 36 abc 'rZca1 .

The second term in equation (3.3) shows the effect of dividing the gridcells over the available

processors. If this can't be done evenly some processors have to handle more gridcells than other

processors, which is called load imbalance.

The load imbalance can be avoided by choosing the correct implernentation, but in general this

term is present.

3.2 Non-parallel parts of the computation

Some parts of the computation cannot be performed completely in parallel. In the grid three

boundaries can be pointed out at which some extra computations are necessary (see section 2.3).

These boundaries are:

- the outer perimeter of the grid,

- the source boundary,

- the monitor boundary.

At the outer perimeter of the grid one has to take care that the fields comply with the radiation

condition in order to avoid nonphysical reflections of the fields, see section 2.3. 1.

At the source boundary the incident fields are initialised as a plane wave, see section 2.3.2.

The monitor boundary is used to determine the final results, after all time steps are done. During

the last 5 steps the fields on this ,oundary must be monitored to determine amplitude and phase of

the scattered field, see section 2.j.3.

The extra work that must be done at these boundaries is:
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- 20 floating operations at the outer perimeter,

- 20 floating operations at the source boundary,

- 3 floating operations at the monitor boundary.

It must be noted that the extra work at the monitor boundary is only necessary during the last 5

time steps, but in this analysis it is supposed to be done during all steps. This is only a small

deviation from reality because the number of operations needed at this boundary is small

compared to the other boundaries. The computations at these boundaries are taken care of by the

appropriate processors and are done in parallel by those processors. The other processors,

however, must wait until this work is done. That is the reason that this part of the update is not

done completely in parallel.

The time needed for these computations can be expressed as:

a b
TnP = 43 ( F- IF - 1 ) c t cakC (3.4)

Pi P2

in which we assume that all boundaries have the same number of gridcells. Because the source

and monitor boundary are only slightly smaller than the outer boundary the time for the above

mentioned non-parallel computation will be a little smaller than given by equation (3.4).

The time needed for all computations in one time step can now be found by summing equation

(3.3) and (3.4).

3.3 Time needed for communication

When defining the computational domain of the problem one must be careful that this grid can be

mapped onto the processor network of the parallel machine that is used. The Parsytec at the

University of Amsterdam is equipped with 16 x 32 processors in a rectangular grid. One natural

choice for mapping the computational domain onto this network is to assign all gridcells in one

cartesian direction of the grid to the same processor, as shown in fig 3.3. With this mapping it is

only necessary to exchange data between two adjoining processors, as is clear from the equation

for the update of the fields and fig 3.3.

Data transfer is necessary after each update and for every gridcell at a boundary of two processor,

two field components must be imported from the next processor. The communication is done for

the complete processor network in one direction at the time. For the directions we use the terms

North, East, South and West, denoting the four sides of the rectangular network. First all data is

transferred from East to West in the processor network, then from West to East, from North to
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South and finally from South to North. The reason for this kind of communication is that it is easy

to implement in Parix, the operating system that is used.

For the communication from East to West we know that there are P2 processors that must send

and receive data. Each processor sends (and receives) 2 F b/p 2 ] field components of 4 bytes. In an

equation this reads:

T~eno&w= "tstartup + 2. F - 14. c. 1Ccomm (3.5)
P2

where "tatup is the time to set up a communication link between two adjacent processors and

tCOmff the time needed to transfer I byte over this link. Every processor, except those at the edges

of Lhe computational domain, must send data from East to West and from West to East.

Furthermore the same time is needed to receive data from the East and from the West. So for the

East-West communication the total time will be 4 times the time given in eq (3.5) (we don't

consider the fact that processors at the edges have to do less communication), resulting in:

b
TcOmm1n1E\w = 4 1 Istaup + 2. F - 14. c. tcomm } (3.6)

P2

For the North-South communication we follow the same reasoning and arrive at:

Tcommn.s =4 ( Istarup + 2. F 14. c. tcomm 1 (3.7)
Pi

3.4 Total time needed

By summing eq (3.3), (3.4), (3.6) and (3.7) we arrive at an expression for the total time that is

needed for one time step. This equation then reads:

a b
=36 F-- 1 F 1 calc +

PI P2

a b
43 (-1 + F - 1) C tcaC2

Pi P2

a b
8 tstartup + 32 (- + F -) ccomm (3.8)

P1 P2
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Equation (3.8) represents a simple model for the implementation of the FDTD method on a

parallel machine, so this equation can merely be used to obtain an impression of the

computational cost of the method. For a more exact estimate a more extensive analysis must be

done.

We can substitute the expression for Tseq, as given earlier, and for Tp," from equation (3.8) in

equation (3.1) and compute the numerical efficiency for various parameters. To do this it is also

necessary to supply some values for the system parameters of the machine we are using. At the

Parsytec GCell-3/512 those values are approximately [91:

"- traic = 1. 10.6 s (for I floating operation),

"Tco0lmm = I . 10.6 s (for the communication of I byte),

"- Ttup = 1.5. 10-4 s (to startup a link for communication).

The numerical efficiency for various numbers of gridcells and processors is given in fig 3.4. It is

clear that the efficiency of this method is very close to unity as long as the number of gridcells to

be handled by each processor, also called the grainsize, is large. Of course this increases the total

computational time as well, this will be discussed in chapter 4.

Numerical efficiency of the 3D FDTD code
p2=8

used parameters
efficiency

1 - - #cells 1000
-#cells 100000

0.8- - #cells 1000000

0.6- -

0.4-

0.2

0*
0 5 10 15 20 25 30 35

# processors (pl)

Fig. 3.4 Numerical efficiency for various numbers of gridcells and processors
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4 COMPUTATION TIME AND MEMORY USAGE

4.1 Memory usage of the FDTD code

When implementing the FDTD method on any computer one has to consider memory

requirements because the number of gridcells grows rapidly with increasing size of the

computational domain. Besides, a substantial amount of values must be known in each gridcell to

perform the update. In each gridcell the values of 3 components of the electric field, 3

components of the magnetic field and 4 material properties (permittivity, permeability, electric

and magnetic conductivity) must be known. Furthermore, each processor must also store the

values from communication with the neighbouring processors. This amounts to three field

components for each plane of the gridcell for which the processor doesn't store those values itself,

see fig 3.2. It must be noted that at the borders of the computational domain these values do not

originate from communication with other processors. Neverthele• thc same amount of storage

space must be available.

Summarizing the memory requirement for each gridcell is:

- 10 numbers of 4 bytes,

- 3 numbe2rs of 4 bytes for each plane at the border of the subdomain of the processor.

Besides, each processor must also store the executable code and reserve some memory for the

operating system. This is estimated to be 800 kB.

This results in:

a b a b a b
Mp=40Fal -1c + 12{[-lc +[ F---c + [-ia-l F + 8. 105 (4.1)

Pi P2 Pi P2 P1 P2

With eq (4.1) it is possible to compute the number of bytes of memory needed by each processor,

but also to determine the minimum amount of memory needed by the FDTD code on a computer

with only one processor. (This remark holds for parallel computers as well, as long as task

decomposition is used.)

The total amount of memory can easily be found by multiplying the result of eq (4.1) with the

number of processors. This latter number is, however, of little interest. One could define for

instance the memory efficiency as the minimum amount of memory divided by the amount of

memory used by the parallel computer, but this is only relevant when the efficient use of memory

is critical.
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The memory requircment is computed for a gridsize of 300x300x400 cells as a function of the

number of processors. The result is shown in fig 4.1 with the drawn line the memory per

processor in megabytes. When the full network of available processors is used, 32x16 processors,

the required memory is 3.9 MB per processor. Theoretically this is the maximum possible

computational domain that can be defined at this machine.

Theoretical analysis Parsytec
- -Mom. poe pros

total memory (MB) memory per porocessor (MB) - Total nereer

2.500 - 100

-- 90

2.000 - . - . - -80

-70

1.500 - 60

50

1.000 - -40

3C

500 - 20

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number processors (pl)

300x300x400 cells; p2=16

memory optimum: 1444.8 MB

Fig. 4.1 The memory requirement computed for a gridsize of 300 x 300 x 400 cells

4.2 Runtime of the FDTD code

This section will give a comparison of the runtime needed by the FDTD code, as elaborated upon

in this report, when this code is implemented on the Parsytec GCel-3/512 and on the Convex C-

230. For this comparison we will use eq (3.8) to estimate the runtime needed for one time step by

the Parsytec. For the time needed by the Convex we will use the following expression,

empirically determined by v. Gennip [8]:

T = 1.3*(1.7. 10-6 d3 + 2.7.10-5 d2 + 2.9. 10-3 d) (4.2)

where d represents the cube root of the number of gridcells.
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In order to make a thorough comparison we will use three gridsizes. The first grid will be

30x30x40 cells, making it possible to define objects with a size of about one wavelength in all

dimensions. These kind of objects are mostly interesting from scientific point of view. The next

grid will be l20xl20x200 cells, which is the maximum possible grid at the Convex at this

moment restricted by the amount of available memory, see section 4.1. The third grid under

consideration will be 300x300x400 cells, making it possible to define objects with a size of about

10 wavelengths in all dimensions. Objects of this size are considered quite large in the field of

RCS computations with the finite difference method.

When applying eq (3.7) we can vary for instance the number of processors used. Furthermore we

must set values for various system times. We use the same values as we did in the assessment of

the numerical efficiency in chapter 3:

- 1Ctalc = 1. 10-6 S (for I floating operation),

- "tconm = 1.10-6 s (for the communication of I byte),

- "Staup = 1.5.10-4 s (to startup a link for communication).

The expected runtimes are estimated for various sizes of the processor network used. In all cases

the computations are done as function of the number of processors Pl, see fig 3.3, and for P2 equal

to 1, 4, 8 and 16. A representative collection of the results is given in fig 4.2 to 4.5. In all graphs

the vertical axis displays the time needed to compute all the fields in the grid after one time step,

including the communication with the neighbouring processors. The horizontal axis displays the

number of processors (pl) used by the Parsytec. A footnote states the size of the grid and the

number of processors P2.

Fig 4.2 shows that for a grid of 30x30x40 cells the Convex needs 0.25 s for each update. The

Parsytec is faster when 10 processors in a row are used. Also the effect of load imbalance is very

clear from this graph. If this computation is done with 20 processors instead of 10 (in a row) one

only gains a few tens of seconds per update.

Fig 4.3 and 4.4 give the estimates for the maximum grid size possible on the Convex. The time on

the Convex is 7.7 s. The Parsytec needs 18xI processors (fig 4.3) or 2x8 processors (fig 4.4) to

perform an update in the same time. This obviously shows that using a processor network as in fig

4.4 is more efficient than the one in fig 4.3.

Fig 4.5 finally is the result for the 300x300x400 grid. From the memory analysis in section 4.1 we

know that it is only possible to use this grid on the maximum available number of processors. The

time needed for one update is slightly less than 4 s, which is not yet unacceptably high.
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Theoretical analysis Parsytec
-Cony..

time (s) - Parxylec -

126

1 6 • J

1 2-

06

04

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number processors (pl)

30x30x40 cells; p2=1
memory Convex : 5
memory optimum: 2.3

Fiv. 4.2 Time needed for one update for a grid of 30 x 30 x 40 cells as a function of the number of
processors pl; P2=1

Theoretical analysis Parsytec
i-.Con....

time (s) -- Parsytec

55

50 -

45 -

40

35 -

30

25 --

20

15 -

I0 -

0 2 4 8 1 10 12 14 16 16 20 22 24 28 26 30 32

number processors (pl)

120x120x200 cells; p2-1
memory Convex : 238.8 MB
memory optimum: 116.7 MB

Fig. 4.3 Time needed for one update for a grid of 120 x 120 x 200 cells as a function of the number
of processors Pl; P2=1
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Theoretical analysis Parsytec
-- " Convex

tim e (s) - Pa rsyl e¢

30-

25

20

15

isi

10-

01
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number processors (p1)

120xt20x200 cells; p2=8
memory Convex : 238.8 MB
memory optimum: 116.7 MB

Fig. 4.4 Time needed for one update for a grid of 120 x 120 x 200 cells as a function of the number
of processors PI P2= 8

Theoretical analysis Parsytec

time (s)

75-

25

0 ! . I . ir . -- ' ' I I I I ' - i0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number processors (pl)

300x300x400 cells; p2-16

memory optimum: 1444.8 MB

Fig 4.5 Time needed for one update for a grid of 300 x 300 x 400 cells as a function of the numberof processors P1; P2=16
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SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In this report we have presented a theoretical study on the performance of an implementation of

the FDTD code on a massively parallel computer. An expression was derived for the time needed

to run this code on a parallel machine using a data decomposition algorithm. In this algorithm the

computational domain is divided into columns that are assigned to the individual processors. For

every time step each processor updates all field values in the column and then exchanges data at

the borders of the columns with adjacent processors. This type of data-decomposition is a natural

choice for a parallel computer which is configured as a two-dimensional grid of processors. The

derived expression can be adapted in a straightforward manner to parallel computers configured

as a three-dimensional grid of processors.

Run times for the code were determined for the Parsytec GCel-3/512 of the "Interdisciplinary

Center for Computer based Complex systems research Amsterdam (IC 3A)", which is configured

as a two-dimensional grid of 512 (16x32) T805 transputers. This was done under the assumption

of asynchronous communication. Comparisons with the performance of an implementation on a

conventional supercomputer, the Convex C230 of the Physics and Electronics Laboratory TNO,

were presented.

5.2 Conclusions

From the analysis presented in this report it is concluded that the FDTD method is naturally suited

for large scale processing on massively parallel processors (MPP). The numerical efficiency of a

parallel implementation is expected to be 0.95 to 0.99, provided the grainsize is large. This means

that the speed-up is directly proportional to the number of processors used.

On the Convex C230 the maximum domain size which can be handled comprises of

120x120x200 grid cells. For this problem the estimated execution time on the Parsytec is roughly

10 times smaller than on the Convex.

On the Parsytec the maximum domain size is 300x300x400 grid cells. The time needed for one

time-step is slightly less than 4 s, which is not yet unacceptably high.

5.3 Recommendation

As a direction of future research we recommend to implement the FDTD code on the Parsytec

GCel-3/512 at the IC3A, in order to obtain a fast and powerful code for electromagnetic
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computation and to check the analysis presented here. Such a code can easily be ported to the next

generation of parallel computers, which will make available computational speeds from 100

Gflops to I Tflop before the end of the century.
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